请选择 进入手机版 | 继续访问电脑版

参数高原-聊聊几种程序化交易模型的参数如何优化

[复制链接]
查看374 | 回复0 | Jason | 2020-11-24 10:22:38 | 显示全部楼层 |阅读模式
本文转自知乎,原作者:孙远山。

A 参数高原与参数孤岛



参数优化中一个重要的原则就是要争取参数高原而不是参数孤岛。所谓参数高原,是指存在着一个较宽的参数范围,模型在这个参数范围内都能取得较好的效果,一般会以高原的中心形成近似正态分布状。而所谓参数孤岛,是指只有在参数值处于某个很小的范围内时,模型才有较好表现,而当参数偏离该值时,模型的表现便会显著变差。

图为参数高原

以参数高原示意图和参数孤岛示意图为例,假设某交易模型内有两个参数,分别为参数1和参数2,当对两个参数进行遍历测试后,得到一张三维的绩效图。好的参数分布应当是参数高原示意图,即使当参数的设置有所偏移,模型的获利绩效依然能够得到保证。这样的参数因稳定性强,可以使得模型在未来实战中遇到各类行情时,具有较强的因应能力。但如果遍历参数后的绩效结果如参数孤岛示意图,当参数发生小的偏移时,模型的获利绩效就发生较大变动,那么这样的参数因适应性能差,往往难以应对实际交易中变化多端的市场环境。

图为参数孤岛

一般来说,如果附近参数系统的性能远差于最优参数的性能,那么这个最优参数有可能是一个过度拟和的结果,在数学上可以认为是奇点解,而不是所要寻找的极大值解。从数学角度来说,奇点是不稳定的,在未来的不确定行情中,一旦市场特征发生变化,最优参数可能会变为最差参数。



过度拟合与选取的样本有关系,如果选取的样本不能代表市场总体特征,只是为了使测试结果达到正的期望值而去调整参数,这种做法无疑是自欺欺人,所得到的参数值是过度拟合的无效参数值。例如,通过分析参数过度拟合,交易模型分别在数值35和63出现了收益率突增现象,如果模型中的相应指标选用35和63做参数,则模型的收益看上去很完美,但实际上却是典型的参数孤岛效应。



过度拟合与参数优化的主要矛盾在于,模型参数优化得到的最优参数只是建立在已经发生过的历史数据样本上,而未来的行情是动态变化的,与历史行情相比既有相似性,也有变异性。模型设计者可以找到模型在历史上表现最好的参数,但是这个参数在未来模型实际应用中未必表现最好,更有甚者历史上表现最好的模型参数,在未来模型实战中可能是表现很糟糕的参数,甚至带来大幅亏损。比如,筛选出了一个能抓住历史上一波大行情的一个参数,但设置这样参数值的模型,并不意味着模型在未来实战中也能有如此好的表现,这个历史上较佳的参数值可能在未来模型的应用中没有起到任何帮助。

图为参数过度拟合分析

此外,参数高原与参数孤岛往往还与交易次数存在较大关系。如果模型的交易次数较少,往往能找到一个合适的参数点,使得模型在这几次交易中都盈利,这种参数优化后的模型获利体现出较强的偶然性。如果模型的交易次数较多,模型获利的偶然性就会下降,更多地体现出获利的必然性和规律性,也就会存在一个参数高原。而这种参数优化模型才是进行参数优化的目的所在。




回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

相关课程推荐
桥博士《MACD指标详解》
为什么我们只用MACD金叉死叉来进行操作效果并不好,学习课程就能在研究MACD指标上少走很多弯路
桥博士《K线形态组合解析》
从理论到实战,让您全面掌握各种K线形态及各种组合,帮您分析梳理大量K线知识让您的投资更游刃有余
桥博士《股票入门基础知识》
从理论到实战,课程包括如何买卖股票、开户流程、交易软件、k线图知识、技术指标、价值投资等新手必备知识

39

主题

157

帖子

609

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
609
  • 官方论坛

    提供最新 Discuz! 产品新闻、软件下载与技术交流