请选择 进入手机版 | 继续访问电脑版

智能算法中的TWAP算法、VWAP算法与IS算法

[复制链接]
查看523 | 回复0 | Louis | 2020-12-10 10:25:54 | 显示全部楼层 |阅读模式
TWAP

       TWAP交易时间加权平均价格Time Weighted Average Price 模型是把一个母单的数量平均地分配到一个交易时段上。该模型将交易时间进行均匀分割,并在每个分割节点上将拆分的订单进行提交。例如,可以将某个交易日的交易时间平均分为N 段,TWAP 策略会将该交易日需要执行的订单均匀分配在这N 个时间段上去执行,从而使得交易均价跟踪TWAP,也是一个计算公式:


QQ图片20201210103846.png

       TWAP不考虑交易量的因素。TWAP的基准是交易时段的平均价格,它试图付出比此时段内平均买卖差价小的代价执行一个大订单。TWAP模型设计的目的是使交易对市场影响减小的同时提供一个较低的平均成交价格,从而达到减小交易成本的目的。在分时成交量无法准确估计的情况下,该模型可以较好地实现算法交易的基本目的。但是使用TWAP过程中的一个问题是,在订单规模很大的情况下,均匀分配到每个节点上的下单量仍然较大,当市场流动性不足时仍可能对市场造成一定的冲击。另一方面,真实市场的成交量总是在波动变化的,将所有的订单均匀分配到每个节点上显然是不够合理的。因此,算法交易研究人员很快建立了基于成交量变动预测的VWAP 模型。不过,由于TWAP 操作和理解起来非常简单,因此其对于流动性较好的市场和订单规模较小的交易仍然适用。








VWAP

VWAP是Volume Weighted Average Price的缩写,译为成交量加权平均价,VWAP策略是一种拆分大额委托单,在约定时间段内分批执行,以期使得最终买入或卖出成交均价尽量接近这段时间内整个市场成交均价的交易策略。它是量化交易系统中常用的一个基准。作为一个基准量,VWAP就是一个计算公式:


QQ图片20201210102757.png

       要做到这一点,VWAP模型必须把母单分割成为许多小的子单,并在一个指定的时间段内逐步送出去。这样做的效果就是降低了大单对市场的冲击,改善了执行效果;同时增加了大单的隐秘性。显然,VWAP模型的核心就是如何在市场千变万化的情况下,有的放矢地确定子单的大小、价格和发送时间。
       VWAP模型做到这一点的关键是历史成交量、未来成交量的预测、市场动态总成交量以及拆单的时间段(就是总共要将总单拆分成多少单分别以怎样的时间频率交易)。较为高级的VWAP模型要使用交易所单簿(Order Book)的详细信息,这要求系统能够得到即时的第二级市场数据(Level II Market Data)。
       VWAP模型对于在几个小时内执行大单的效果最好。在交易量大的市场中,VWAP效果比在流动性差的市场中要好。在市场出现重要事件的时候往往效果不那么好。如果订单非常大,譬如超过市场日交易量的1%的话,即便VWAP可以在相当大的程度上改善市场冲击,但市场冲击仍然会以积累的方式改变市场,最终使得模型的效果差于预期。
       VWAP算法交易的目的是最小化冲击成本,并不寻求最小化所有成本。理论上,在没有额外的信息,也没有针对股票价格趋势的预测的情况下,VWAP 是最优的算法交易策略。




执行落差交易策略(IS):
IS是以执行落差为决策基础的一种算法交易策略。执行落差被定义为目标交易资产组合与实际成交资产组合在交易金额上的差异。IS策略的目标是执行落差最小化,或者说是在综合考虑冲击成本和市场风险后,通过需找寻找最优解来跟踪价格基准的一种策略。假设目标交易价格为P0,实际交易价格为P,则IS策略的最终目标为
为了达到这个目的,IS的基本流程如下:
(1)确定目标交易价格P0,作为交易基准,这个价格可以是到达价、开盘价、一日收盘价等。再设定一个容忍价格Pr,作为交易的边界条件。
(2)当市场实际价格低于或高于P0时,按一定的策略下单进行买入或卖出交易。
(3)当市场实际价格高于或低于Pr时,不进行买入或卖出交易。
(4)当市场实际价格处于P0和Pr之间时,可以按照介于积极和消极交易策略之的策略进行交易。
使用IS的优点包括:
(1)IS策略较为全面地分析了交易成本的各个部分,在冲击成本、时间风险、价格增长等因素之间取得了较好的平衡,更加符合最优交易操作的目标。
(2)IS策略根据目标价格对交易过程的优化,更加符合投资决策的过程。
(3)IS策略多用于组合交易,而对于组合交易来说该算法能够利用交易清单上股票间的相关性更好地控制风险。

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

13

主题

86

帖子

394

积分

实习版主

Rank: 7Rank: 7Rank: 7

积分
394
  • 官方论坛

    提供最新 Discuz! 产品新闻、软件下载与技术交流